REVISION HISTORY

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>Sep 18, 2014</td>
<td>Initial release</td>
</tr>
<tr>
<td>1.0</td>
<td>Dec 30, 2015</td>
<td>First version</td>
</tr>
</tbody>
</table>
Contents

1. Introduction .. 10
 1.1 General Introduction .. 10
 1.2 Purpose of This Document ... 11
 1.3 Design Support .. 11
 1.4 Abbreviations and Acronyms Used .. 11
 1.5 Reference Document .. 14
 1.5.1 RTX 2.0 Specification V2.0, Nov, 2015 .. 14
 1.5.2 Industry Standards Documents .. 14
 1.6 Schematic Example Correctness ... 15
 1.7 Software Support ... 15
 1.8 Schematic Example Conventions (TBD) .. 16

2. Infrastructure: Connector, Power Delivery, System Management 17
 2.1 Module Connector ... 17
 2.2 Module Power .. 20
 2.2.1 Input Voltage Range .. 20
 2.2.2 Input Voltage Rise Time .. 20
 2.2.3 Module Maximum Input Power ... 21
 2.2.4 Power Path ... 21
 2.3 Module I/O Power ... 22
 2.4 RTX_PGOOD and CB_PGOOD ... 23
 2.5 CB_PWR_EN ... 23
 2.6 RESET IN Module ... 24
 2.7 Power Button ... 24
 2.8 Power up Sequence ... 24
 2.9 Boot Selection .. 25
 2.9.1 Boot Definitions ... 25
2.9.2 RTX BOOT_SEL Pins ... 26
2.10 RTC Backup Power .. 26

3. Display Interfaces ... 27

3.1 Module LVDS ... 27
3.1.1 Display – 18/24 bits LVDS LCD Single Channel 27
3.1.2 Display Parameter and EDID ... 30
3.1.3 Power Sequence of LVDS Panel Requirement 30
3.1.4 Power Delivery of LVDS panel .. 30
3.2 Embedded DisplayPort (eDP) Display ... 31
3.2.1 eDP interface ... 31
3.2.2 eDP/LVDS LCD Pin Sharing ... 31
3.3 HDMI ... 32
3.4 Parallel LCD ... 33
3.5 VGA ... 33

4. Low/Medium Speed Serial I/O Power Interfaces 34

4.1 Asynchronous Serial Ports .. 34
4.1.1 RS232 Ports .. 34
4.1.2 RS485 Half-Duplex ... 35
4.1.3 RS422 Half-Duplex ... 35
4.2 I2C Interfaces .. 35
4.2.1 General ... 36
4.2.2 I2C Level Transition, Isolation and Buffering 36
4.2.3 I2C_PM Bus EEPROMs ... 37
4.2.4 General I2C Bus EEPROMs .. 37
4.2.5 I2C Based IO Expanders .. 37
4.3 I2S Interfaces .. 38
4.3.1 General ... 38
4.3.2 Freescale SGTL5000 I2S Audio Example ... 38
4.3.3 Intel High Definition Audio Over I2S2 ... 39
4.4 4.4 SPI Interface ... 40
4.4.1 General ... 40
4.4.2 RTX Implementation ... 40
4.5 CAN Bus .. 40
4.5.1 General ... 40
4.5.2 RTX Implementation ... 41
4.5.3 Isolation .. 41
5. High Speed Serial I/O Interfaces ... 41
5.1 USB Bus .. 41
5.1.1 General ... 41
5.1.2 USB OTG .. 42
5.1.3 USB 2.0/USB 3.0 Host Ports ... 43
5.2 GBE ... 43
5.2.1 GBE Carrier Connector Implementation Example .. 43
5.2.2 GBE Mag-Jack Connector Recommendation ... 44
5.2.3 GBE LEDs .. 45
5.3 PCIe ... 46
5.3.1 General ... 46
5.3.2 PCIe X1 add-in Card on Carrier ... 46
5.3.3 PCIe M.2 (TBD) .. 46
5.4 SATA .. 47
5.4.1 General ... 47
5.4.2 SATA Form Factor .. 47
5.4.3 SATA-DOM .. 48
5.4.4 SATA Connector ... 48
6. Memory Card Interfaces.. 49
 6.1 SD Card... 49
 6.2 eMMC ... 50

7. Camera Interfaces.. 51
 7.1 General.. 51
 7.2 Camera Data Interface formats ... 52
 7.3 Serial Camera Interface Example .. 52
 7.4 Parallel Camera Interface Example .. 53
 7.5 CSI/PCAM Pin Sharing .. 54

8. GPIO.. 55
 8.1 RTX Module GPIO... 55
 8.2 RTX GPIO multi-function Pin Sharing for Keypad... 55

9. System Bus Interface.. 56
 9.1 General.. 56
 9.2 Support.. 56

10. Thermal Design and Management ... 56
 10.1 General... 56
 10.2 Heat Spreader ... 56
 10.3 Thermal Resistance Calculations ... 57

11. Carrier Board PCB Design Overview... 58
 11.1 General PCB Stack-up and consideration... 58
 11.2 Six Layers PCB Stack-up .. 58
 11.3 Trace Parameters for High Speed Differential Interface 59
 11.4 Trace Parameters for High Single Ended Interface (TBD) 59
Figure 27 Freescale I2S Audio .. 38
Figure 28 Daughter board for Intel HD Audio ... 39
Figure 29 SPI ROM .. 40
Figure 30 CAN Bus Transceiver ... 41
Figure 31 USB 2.0 OTG .. 42
Figure 32 USB 3.0 IO .. 43
Figure 33 GBE Application ... 44
Figure 34 PCIe X1 .. 46
Figure 35 SATA-DOM ... 48
Figure 36 SATA Connector .. 48
Figure 37 SD Card ... 49
Figure 38 eMMC ... 50
Figure 39 CSI Module ... 52
Figure 40 Parallel Camera Module ... 53
Figure 41 Keypad .. 55
Figure 42 Heat Spreader 2D Drawing ... 56
Figure 43 Z-Height of Carrier board and Module with Heat Spreader 56
Figure 44 SIX Layers PCB Stack-Up Example of 1.6mm (62 mils) Thick PCB 58
Table
Table 1 Schematic Power Naming .. 17
Table 2 BOOT Device Selection ... 26
Table 3 LVDS/eDP Pin Assignment .. 31
Table 4 Magnetics Characteristics ... 45
Table 5 SATA Form Factor .. 47
Table 6 CSI/PACM Pin Assignment ... 54
Table 7 GPIO Multi-function Pin Assignment ... 55
Table 8 Thermal Table .. 57
Table 9 Impedance Table and Trace Width/Spacing of 1.6mm (62 mils) Thick PCB 59
1. Introduction

1.1 General Introduction

The RTX 2.0 (Ruggedized Technology eXtended) specification is a Ruggedized Standard platform designed for demanding applications. Through its innovative mechanical and electrical design, products designed with RTX2.0 can perform in complex and challenging environments such as military, logistics, transportation/fleet management, and many other industrial applications.

RTX 2.0-based modules include four board-to-board connectors for all I/O signals and mounting hole locations. The asymmetrical mounting hole design provides two advantages. Firstly, they provide an effective fool-proof solution during assembly. Secondly, the defined mounting holes not only allow screw fixing onto the carrier board via metal nuts, but also provide superior heat dispersion. As for I/O expansion, RTX 2.0 uses the standard 400-pin definition through four connectors providing customers with high I/O expandability. Also, it takes the latest interface trends into account. RTX 2.0 supports both USB 3.0 and MIPI/CSI-2 (Camera interface) to offer better expansion that can meet a variety of different requirements.

Applications included:

- Military
- Industrial control system
- Transportation/Fleet management
- Robotic
- Power equipment
- Inspection equipment
1.2 Purpose of This Document
This document provides design recommendations for an RTX 2.0 Carrier Board, which is based on an RTX 2.0 Module. It identifies the hardware integration aspect that must be considered when designing a platform or application.

The document is written for system hardware engineers. It also addresses firmware and OS/Software implications wherever applicable. This guide is intended to aid hardware designers, to help them understand the application of the modules they are developing and RTX infrastructure.

Note: The document provides signal routing trace length on the board level only and excludes package length information.

Note: This document is based on the existing industry specification, which may be revised and upgraded. All information specified is preliminary based on current expectations, and are subject to change without notice.

1.3 Design Support
There are a number of ways to have a RTX 2.0 Carrier board developed:

- Consult with your RTX 2.0 module vendor to review your design or follow their design checklist. Make sure to also have the appropriate semiconductor companies review the portions of the design that utilize their components, or follow up their design applications and design guideline.
- Use a 3rd party firm that specializes in RTX 2.0 Carrier Board development.
- Contact your RTX 2.0 module vendor. The module vendor may have an FAE available for advice. Many vendors may undertake custom carrier board design projects for significant opportunities.

1.4 Abbreviations and Acronyms Used

- **ADC** Analog to Digital Converter
- **ARM** Advanced RISC Machines www.arm.com
- **BCT** Boot Configuration Table
- **BSP** (Software) Board Support Package
- **CAD** Computer Aided Design
- **CAN** Controller Area Network
- **CPLD** Complex Programmable Logic Device
- **CODEC** Coder – Decoder
- **CSI** Camera Serial Interface www.mipi.org
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC</td>
<td>Digital to Analog Converter</td>
</tr>
<tr>
<td>DB-9</td>
<td>Connector, D shaped, B shell size, 9 pins</td>
</tr>
<tr>
<td>DE</td>
<td>Differential Ended (signal pair)</td>
</tr>
<tr>
<td>DNI</td>
<td>Do Not Install (component is not loaded)</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processor</td>
</tr>
<tr>
<td>EDID</td>
<td>Extended Display Identification Data</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electrically Erasable Programmable Read Only Memory</td>
</tr>
<tr>
<td>eMMC</td>
<td>Embedded Multi Media Card</td>
</tr>
<tr>
<td>ESD</td>
<td>Electro Static Discharge</td>
</tr>
<tr>
<td>FET</td>
<td>Field Effect Transistor</td>
</tr>
<tr>
<td>FIFO</td>
<td>First In First Out (buffer memory)</td>
</tr>
<tr>
<td>FS</td>
<td>Full Speed (USB 2.0 12 Mbps)</td>
</tr>
<tr>
<td>GBE</td>
<td>Gigabit Ethernet</td>
</tr>
<tr>
<td>Gbps</td>
<td>Giga bits per second</td>
</tr>
<tr>
<td>GPIO</td>
<td>General Purpose Input / Output</td>
</tr>
<tr>
<td>HDA</td>
<td>High Definition Audio – Intel defined format</td>
</tr>
<tr>
<td>HDMI</td>
<td>High Definition Multimedia Interface</td>
</tr>
<tr>
<td>HID</td>
<td>Human Interface Device: USB device class</td>
</tr>
<tr>
<td>HS</td>
<td>High Speed (USB 2.0 480 Mbps)</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>I2C</td>
<td>Inter-Integrated Circuit</td>
</tr>
<tr>
<td>I2S</td>
<td>Inter-Integrated Circuit – Sound</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>iMX6</td>
<td>Popular ARM SOC from Freescale Semiconductor</td>
</tr>
<tr>
<td>IO</td>
<td>Input Output</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization (French)</td>
</tr>
<tr>
<td>JEDEC</td>
<td>Joint Electron Device Engineering Council</td>
</tr>
<tr>
<td>JPEG</td>
<td>Joint Photographic Experts Group</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>LVDS</td>
<td>Low Voltage Differential Signaling</td>
</tr>
<tr>
<td>M2.5</td>
<td>Metric 2.5mm</td>
</tr>
<tr>
<td>M3</td>
<td>Metric 3.0mm</td>
</tr>
<tr>
<td>MAC</td>
<td>Media Access Controller (e.g. logic circuits in GBE)</td>
</tr>
<tr>
<td>Mbps</td>
<td>Mega bits per second</td>
</tr>
<tr>
<td>MIPI</td>
<td>Mobile Industry Processor Interface</td>
</tr>
<tr>
<td>MLC</td>
<td>Multi Level Cell (Flash Memory Reference)</td>
</tr>
</tbody>
</table>
- MO-297 Module Outline 297 (“Slim SATA” format) [www.jedec.org]
- MO-300 Module Outline 300 (mini-PCIe Express card format) [www.jedec.org]
- MPEG Motion Picture Experts Group [www.mpeg.org]
- NAND A high density flash memory technology
- nS Nano second (10^-9)
- NC Not Connected
- NXP A semiconductor company [www.nxp.com]
- OS Operating System
- OTG On the Go (USB term – device can be host or client)
- PCB Printed Circuit Board
- PHY Physical (transceiver) – drives cable
- PICMG PCI Industrial Computer Manufacturing Group [www.picmg.org]
- PCI Peripheral Component Interface [www.pcisig.org]
- PCIe PCI Express [www.pcisig.org]
- PCI-SIG PCI Special Interest Group [www.pcisig.org]
- PCM Pulse-Code Modulation
- PLL Phase Locked Loop
- POE Power Over Ethernet
- pS Pico second (10^-12)
- PWM Pulse Width Modulation
- RGB Video data in Red Green Blue pixel format
- RISC Reduced Instruction Set Computing
- ROM Read Only Memory
- RS232 Recommend Standard 232 (asynch serial ports)
- RS485 Asynchronous serial data, differential, multi drop
- RTC Real Time Clock (battery backed clock and memory)
- SAR Successive Approximation Register
- SATA Serial ATA (serial mass storage interface) [www.sata-io.org]
- SD Secure Digital (memory card)
- SE Single Ended (signal, as opposed to differential)
- SLC Single Level Cell (flash memory reference)
- SMSC A semiconductor company [www.smsc.com]
- SOC System On Chip
- S/PDIF Sony/Philips Digital Interconnect Format
- SPI Serial Peripheral Interface
- SSD Solid State Disk
1.5 Reference Document

1.5.1 RTX 2.0 Specification V2.0, Nov, 2015.

1.5.2 Industry Standards Documents

- eMMC (“Embedded Multi-Media Card”) the eMMC electrical standard is defined by JEDEC JESD84-B51 and the mechanical standard by JESD84-C44 (www.jedec.org).

- GBE MDI (“Gigabit Ethernet Medium Dependent Interface”) defined by IEEE 802.3. The 1000Base-T operation over copper twisted pair cabling defined by IEEE 802.3ab (www.ieee.org).

- CSI-2 (Camera Serial Interface version 2) The CSI-2 standard is owned and maintained by the MIPI Alliance (“Mobile Industry Processor Interface Alliance”) (www.mipi.org).

- HDMI Specification, Version 1.3a, November 10, 2006 © Hitachi and other companies
1.6 Schematic Example Correctness
The schematic examples shown in this Design Guide are implemented to be working correctly—although correctness can’t be guaranteed for all applications. Most of the examples have been applied to the Demo Carrier Board that has been built, tested, and are verified to work.

1.7 Software Support
Hardware examples and suggestions are given in the following pages. RTX 2.0 Carrier hardware design should consider software driver support as part of your checklist. Windows Embedded driver web checklist is as below. It is one of methods to check out driver support on Windows Embedded OS platforms.

Regarding Linux, please consult with your IC vender, OS vender, OS community, and your module vender for driver support and maintenance. In addition, you can write your own driver
as well. Most RTX module vendors offer a BSP (Board Support Package) to support module SOC for each interface driver. Please review the BSP and the device drivers included in your HW device to avoid software development delays.

1.8 Schematic Example Conventions

Some of the conventions used in the examples are described below. The symbol of Off-page has a number index to connect to the schematic page.

Figure 1 Schematic Symbol Conventions

Power and ground symbol:

![Power and ground symbol]

Abbreviation:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNP</td>
<td>Do Not Populated</td>
</tr>
<tr>
<td>TP</td>
<td>Test Point</td>
</tr>
</tbody>
</table>

Off-Page connection symbol:

- Bidirection
- Output
- Input
Table 1 Schematic Power Naming

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ADP_MAIN</td>
<td>Power source to the overall system. Before DCDC converter with UVP and OVP protection circuit.</td>
</tr>
<tr>
<td>+VDD_RTX</td>
<td>Main power to RTX module. Voltage range is from 5V to 24V.</td>
</tr>
<tr>
<td>+V3A</td>
<td>3.3V standby power.</td>
</tr>
<tr>
<td>+VDD_RTC</td>
<td>RTC backup power to RTX module. Combine with +V3A and coin battery.</td>
</tr>
<tr>
<td>+V3</td>
<td>3.3V IO power supply.</td>
</tr>
<tr>
<td>+V5</td>
<td>5V IO power supply.</td>
</tr>
<tr>
<td>+V12</td>
<td>12V IO power supply.</td>
</tr>
</tbody>
</table>

2. Infrastructure: Connector, Power Delivery, System Management

2.1 Module Connector

The RTX 2.0 Module Connector is well described in The RTX 2.0 Specification and the complete description is not repeated here. RTX 2.0 Module connector is a low profile of board to board connector. There are 4 pairs of 100 pins so each connector has 400 pins. The option mating height of the connector is 3mm or 5mm depending on the system design.

Various height profiles are available for the RTX 2.0 Module connector. The lowest profile available has a Carrier Board PCB top-side to Module PCB bottom-side separation of 2.5mm, and connector mating height of 3mm.

Figure 2: Connector Pins A1 to A100
Figure 3: Connector Pins B1 to B100
2.2 Module Power

2.2.1 Input Voltage Range

RTX 2.0 Modules accept input power voltage from 5V to 24V. Power Input can be fixed 5V, 12V, 19V or Variable voltage input from 5V to 24V DC Power supply.

2.2.2 Input Voltage Rise Time

There is no requirement for Module HW specification on the module power supply rise time. Most power rails will add input capacitors for the transient response to reduce rippling on the power rails. When the system powers on at the initial T0 state, input capacitors create a surge current in the power supply, and this may overpower some of the components (MOSFET Pd). So we recommend adding a soft-start circuit to reduce surge currents at the initial state as below.
2.2.3 Module Maximum Input Power
The RTX 2.0 specification document states that the input voltage range is 5.0V to 24V. Each RTX 2.0 connector pin is able to carry 0.5A current maximum. The RTX module allocates 12 pins for input power and 89 pins for ground. Allow 6A max at +5.0V with 30W or allow 2.5A at fixed 12V with 30 watts. You may consider derating the wattage to 80% and the maximum input power 24 watt. For instance, Freescale dual core SOC is rated at 6 watt and RTX 2.0 input power still has room to upgrade SOC performance to Qual-core and trade off the total power budget.

2.2.4 Power Path
The power path for a basic input voltage and DC converter arrangement for RTX 2.0 carrier board is shown in Figure 7. The figure also shows carrier board power supply sections assuming a typical system powered by power source fixed at 19V. However, you may design a variable source in the 5V to 24V range.
2.3 Module I/O Power

RTX 2.0 only supports 3.3V I/O except USB_OTG_VBUS_DET is 5V. HDMI control (DCC) signals and VGA control (DCC) are 3.3V I/O on module. HDMI control (DDC) signals and VGA control (DDC) signals are 5V at sink (Devices) and have a level shift between +3V and +5V. The recommendation for the gate circuit is as below (IC level shift is acceptable, but the cost is higher.)
2.4 RTX_PGOOD and CB_PGOOD
Module board has the MCU to control the power sequence. When push power on button, the MCU makes sure all power rails on the module are ready, then releases RTX_PGOOD to enable carrier board power rails. After all the power rails on the carrier board are ready, the CB_PGOOD function is issued to the module board and MCU to initialize and power on the SOC.

2.5 CB_PWR_EN
In order to make sure all power rails on the RTX module are ready for all devices, and the module power rails and SOC are ready, the MCU on module will release CB_PWR_EN to power on the carrier board power rails.
2.6 RESET_IN Module
The RTX RESET_IN# signal may be used to force a RTX system reset. It is an input to the module that pulls up resistance on the module. If implemented by the carrier board, request an open drain circuit or a switch to GND should be used. An example is show below.

Figure: 10: Reset Button

2.7 Power Button
RTX not only defines a pin to allow the implementation of a carrier board power button, but also uses the MCU to control the power sequence on the module board and carrier board to make sure power rails are consistent. Please refer to the 2.8 Power up Sequence diagram.

Figure 11: Power Button

2.8 Power up Sequence
2.9 Boot Selection

2.9.1 Boot Definitions

Most SOC used on RTX Modules have the following attributes.

Step 1: SOC has an internal ROM. The internal ROM code is executed after the SOC is reset. This ROM code is provided by the silicon vendor and is inside the SOC.

Step 2: A set of SOC strap pins are used to option what SOC physical device interfaces (SATA, SD Card, SPI, eMMC, etc.) will be used for the Step 2 boot process.

Step 3: The SOC pin configuration is very flexible that most of the SOC pins can be used for several functions, and the RTX Module designer must choose a pin configuration that works for the design configuration. The SOC pin configuration is set by a Boot Configuration Table that is read from external boot media (SATA, SD Card, SPI, eMMC, etc).

There are 3 steps in the boot process:

Step 1: Internal SOC ROM execution

Step 2: Boot from non-volatile memory external to the SOC: BCT is loaded and various other system parameters are configured

Step 3: Operating System Loading
The Operating System load may occur from the same memory as Step 2 BCT boot, or step 2
code may pass the Operating System loading from other devices like USB drive or SATA drive.

2.9.2 RTX BOOT_SEL Pins
RTX 2.0 HW specification defines 3 GPIO pins as optional Boot Sources from BOOT_SEL0# to BOOT_SEL2#. They can be used to inform the module what boot device to BCT boot from. The table below is a BOOT source and BOOT_SEL mapping and reference circuit table for the carrier board.

Table 2: BOOT Device Selection

<table>
<thead>
<tr>
<th>Boot Source</th>
<th>BOOT_SEL2#</th>
<th>BOOT_SEL1#</th>
<th>BOOT_SEL0#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier SATA</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>Carrier SD Card</td>
<td>GND</td>
<td>GND</td>
<td>Float</td>
</tr>
<tr>
<td>Carrier eMMC Flash</td>
<td>GND</td>
<td>Float</td>
<td>GND</td>
</tr>
<tr>
<td>Carrier SPI</td>
<td>GND</td>
<td>Float</td>
<td>Float</td>
</tr>
<tr>
<td>Module device (NAND, NOR) – vendor specific</td>
<td>Float</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>Remote boot (GBE, serial) – vendor specific</td>
<td>Float</td>
<td>GND</td>
<td>Float</td>
</tr>
<tr>
<td>Module eMMC</td>
<td>Float</td>
<td>Float</td>
<td>GND</td>
</tr>
<tr>
<td>Module SPI</td>
<td>Float</td>
<td>Float</td>
<td>Float</td>
</tr>
</tbody>
</table>

Figure 13: BOOT Select Function

2.10 RTC Backup Power
The MCU module to control power on sequence needs to be always powered to enable I2C on MCU.

Figure 14: RTC and CMOS circuit
3. Display Interfaces

3.1 Module LVDS

3.1.1 Display – 18/24 bits LVDS LCD Single Channel

The LVDS interface module is used with single channel LVDS displays 18/24 bits. Typically supporting LVDS 18-bit single channel operation (3 data pairs plus one clock pair) and supporting LVDS 24-bit single channel operation (4 data pairs plus one clock pair). Please refer to your LCD panel vendor spec to define your LVDS cable. The LVDS interface uses differential signals and impedance is 100 ohms. We recommend using coax type cables to control impedance matching to meet with the signal integrity spec. Add grounding pins next to the LVDS differential pair with current loop and EMC performance.

Figure 15: LVDS interface
Reserve Display LED backlight has 5V and 12V options via jumper setting.

Figure 16: LED Backlight Voltage Selections
There are two backlight control signals: PANEL_BKLT_EN and PANEL_BKLT_PWM. PANEL_BKLT_EN enables backlight power rail for LED inside panel. PANEL_BKLT_PWM allows modulation PWM frequency to change the voltage for LED brightness. Some designs require a separate LVDS and backlight interface; depending on your product spec and application.

Figure 17: Panel LED Voltage Control and Brightness Control
3.1.2 Display Parameter and EDID
The E-EDID Standard defines requirements and options for data structures that enable a display (Sink) to inform the host (Source) about its identity and capabilities. This standard also makes recommendations for some data fields. Host (Source) devices are required to read and properly handle the data that a display (Sink) provides. The EDID data structure is independent of the communications protocol used between the display (Sink) and the host (Source). Enhanced EDID defines a basic data structure (known as BASE EDID or block 0) of 128 bytes that all compliant displays shall supply. E-EDID also defines the rules for how EXTENSIONS may be added to the BASE structure.

EDID of I2C on Module is 3.3V. If your panel spec of EDID interface is 5V, please add level shift from 5V to 3.3V.

3.1.3 Power Sequence of LVDS Panel Requirement

Figure 18: Power Sequence of LVDS Panel.

Figure 18 is about the LCD panel power sequence, each vendor may define it slightly differently. Please refer to each specific panel specification that you implement in your system and work with SW team to fine tune it.

3.1.4 Power Delivery of LVDS panel
The carrier board provides the power supply for flat panels. The power delivery path from the carrier board to panel may have variable DC resistance to cause voltage drops and panel display issues, so you need to meet the power tolerance on the panel spec for voltage. Most carrier board designs may add MOSFET to the control power sequence. MOSFET has RDs
ON the inside to cause slight voltage drops, PCB and LVDS cables also have similar DC resistance. Consider the worst case scenarios for power consumption and total DC resistance on the path to make sure voltage drops meet the panel specification.

3.2 Embedded DisplayPort (eDP) Display

3.2.1 eDP interface

Embedded DisplayPort (eDP) was developed to be used specifically in embedded display applications. eDP will add new system capabilities while reducing system cost, power, and size. An eDP cable is recommended and uses mico-coax with a differential impedance of 85~110 ohms, cable AWG is 40. In the meantime, consider Differential Insertion Loss, Differential Return Loss, Differential FEXT cables that should include PCB and connector loss. Most applications of eDP panels are for high resolution 2K or 4K applications.

3.2.2 eDP/LVDS LCD Pin Sharing

eDP interface also shares LVDS interface as in the table below. LVDS interface or eDP interface are displayed.

<table>
<thead>
<tr>
<th>Pin Location</th>
<th>LVDS Pin Assignment</th>
<th>eDP Pin Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>D31</td>
<td>LVDS_D0+</td>
<td>EDP_TX0+</td>
</tr>
<tr>
<td>D29</td>
<td>LVDS_D0-</td>
<td>EDP_TX0-</td>
</tr>
<tr>
<td>D37</td>
<td>LVDS_D1+</td>
<td>EDP_TX1+</td>
</tr>
<tr>
<td>D35</td>
<td>LVDS_D1-</td>
<td>EDP_TX1-</td>
</tr>
<tr>
<td>D43</td>
<td>LVDS_D2+</td>
<td>EDP_TX2+</td>
</tr>
<tr>
<td>D41</td>
<td>LVDS_D2-</td>
<td>EDP_TX2-</td>
</tr>
<tr>
<td>D55</td>
<td>LVDS_D3+</td>
<td>EDP_TX3+</td>
</tr>
<tr>
<td>D53</td>
<td>LVDS_D3-</td>
<td>EDP_TX3-</td>
</tr>
<tr>
<td>D49</td>
<td>LVDS_CLK+</td>
<td>EDP_AUX+</td>
</tr>
<tr>
<td>D47</td>
<td>LVDS_CLK-</td>
<td>EDP_AUX-</td>
</tr>
<tr>
<td>D19</td>
<td>LVDS_VDD_EN</td>
<td>EDP VDD_EN</td>
</tr>
<tr>
<td>D23</td>
<td>LVDS_BKLT_EN</td>
<td>EDP_BKLT_EN</td>
</tr>
<tr>
<td>D25</td>
<td>LVDS_BKLT_PWM</td>
<td>EDP_BKLT_PWM</td>
</tr>
<tr>
<td>D32</td>
<td>I2C2_CLK</td>
<td>No use RSVD</td>
</tr>
<tr>
<td></td>
<td>(LVDS_I2C_CK)</td>
<td></td>
</tr>
<tr>
<td>D30</td>
<td>I2C2_DATA</td>
<td>No use RSVD</td>
</tr>
<tr>
<td></td>
<td>(LVDS_I2C_DAT)</td>
<td></td>
</tr>
<tr>
<td>D21</td>
<td>No use</td>
<td>EDP_HPD</td>
</tr>
</tbody>
</table>
3.3 HDMI

Note: HDMI logo and related products should be licensed. Please refer to the HDMI organization (www.hDMI.org) and Module vendors.

HDMI data pairs may be routed directly from module pins to a carrier board’s HDMI connector. The HDMI connector is a hot-plug interface. It is important to consider ESD issues with HDMI. ESD protection is recommended to be added on all HDMI lines. ESD protection on the data lines must be low capacitance to avoid degrading signal integrity on HDMI high speed signals. ESD protection should be located close to the HDMI connector.

The RTX pins HDMI_DDR_SDA, HDMI_DDR_SCL and HDMI_CEC require level shifting from module I/O 3V to the 5V. These 3 signals should meet the HDMI DDC spec.

Based on the requirements set forth in the HDMI Specification Version 1.3a, compliance requires each node sourcing a 5V power signal to be regulated and well protected. This 5v source must be limited current and also provide reverse current protection for many system scenarios. Section 4.2.7 of Version 1.3a provides full details of the regulation requirements. In summary as below, A source shall provide a voltage between 4.8V and 5.3V, implement over-current protection of less than 0.5A, and supply a minimum of 55 mA. A sink shall not draw more than 10 mA from the power signal when powered on. Assume any voltage within 4.7V and 5.3V indicates a source is connected.
Discrete circuit may be referred above. The integrated circuit is TI TPD12S016. HW designers can evaluate which board size and cost they prefer.

3.4 Parallel LCD
Refer to the parallel LCD panel spec to fine tune the timing and power up sequence to meet the LCD specification.

3.5 VGA
The RTX 2.0 module does not support VGA interface. Some embedded applications may need a VGA interface. The alternative is to use a parallel LCD interface to add Triple High Speed Video DAC (CH7055A) to transfer. The reference circuit is shown below. Please refer to Chrontel design note and application.
4. Low/Medium Speed Serial I/O Power Interfaces

4.1 Asynchronous Serial Ports

4.1.1 RS-232 Ports

The RTX 2.0 module asynchronous serial ports run at 3.3v I/O logic levels. The transmit and receive data lines from and to the module are active high, and the handshake lines are active low. If the asynchronous ports are to interface with RS232 level devices, then a carrier RS-232 transceiver is required. The logic side of the transceiver must be able to run at 3.3 I/O levels. The selection of 3.3v I/O compatible transceivers is a requirement. The Maxim MAX3232, illustrated in the figures below. The MAX3232 can operate at maximum speeds 1 Mbps. The transceivers invert the polarity of the incoming and outgoing data and handshake lines.

Figure 21: RS232
4.1.2 RS485 Half-Duplex

Figure 22: RS485

4.1.3 RS422 Half-Duplex

Figure 23: RS 422

4.2 I2C Interfaces
4.2.1 General
The I2C-bus is a de facto world standard that is now implemented in over 1000 different ICs manufactured by more than 50 companies. Additionally, the versatile I2C-bus is used in various control architectures such as System Management Bus (SMBus), Power Management Bus (PMBus), Intelligent Platform Management Interface (IPMI), Display Data Channel (DDC) and Advanced Telecom Computing Architecture (ATCA).

Here are some of the features of the I2C-bus:

- Only two bus lines are required; a serial data line (SDA) and a serial clock line (SCL).
- Each device connected to the bus is software addressable by a unique address and simple master/slave relationships exist at all times; masters can operate as master-transmitters or as master-receivers.
- It is a true multi-master bus including collision detection and arbitration to prevent data corruption if two or more masters simultaneously initiate data transfer.
- Serial, 8-bit oriented, bidirectional data transfers can be made at up to 100 Kbit/s in Standard-mode, up to 400 Kbit/s in Fast-mode, up to 1 Mbit/s in Fast-mode Plus, or up to 3.4 Mbit/s in High-speed mode, and serial, 8-bit oriented, unidirectional data transfers up to 5 Mbit/s in Ultra Fast-mode. On-chip filtering rejects spikes on the bus data line to preserve data integrity. The number of ICs that can be connected to the same bus is limited only by a maximum bus capacitance. More capacitance may be allowed under some conditions.

4.2.2 I2C Level Transition, Isolation and Buffering
MOSFET is one of methods to level shift from 5v to 3.3v as shown in the below figure. Review MOSFET Vgs on voltage to meet your level shift requirement and body diode direction to avoid voltage leakage when the system suspends different power rails.
4.2.3 I2C_PM Bus EEPROMs

The module I2C is rated at 3.3v and draws 3.3v inside, with each power rail at 3.3v. The layout topology of I2C bus is daisy chain. I2C operates Standard-mode (100 Kbit/s), Fast-Mode (400 Kbit/s), Fast-mode Plus (1 Mbit/s) and High-speed mode (3.4 Mbit/s) for Bi-direction bus.

For instance, Fast-mode Plus (Fm+) devices offer an increase in I2C-bus transfer speeds and total bus capacitance. Fm+ devices can transfer information at bit rates of up to 1 Mbit/s, yet they remain fully downward compatible with Fast- or Standard-mode devices for bidirectional communication in a mixed-speed bus system. The same serial bus protocol and data format is maintained as with the Fast- or Standard-mode system. Fm+ devices also offer increased drive current over Fast- or Standard-mode devices allowing them to drive longer and/or more heavily loaded buses so that bus buffers do not need to be used. The drivers in Fast-mode Plus parts are strong enough to satisfy the Fast-mode Plus timing specification with the same 400 pF load as Standard-mode parts. To be backward compatible with Standard-mode, they are also tolerant of the 1 μs rise time of Standard-mode parts. In applications where only Fast-mode Plus parts are present, the high drive strength and tolerance for slow rise and fall times allow the use of larger bus capacitance as long as set-up, minimum LOW time and minimum HIGH time for Fast-mode Plus are all satisfied and the fall time and rise time do not exceed the 300 ns tf and 1 μs tr specifications of Standard-mode. Bus speed can be traded against load capacitance to increase the maximum capacitance by about a factor of ten.

4.2.4 General I2C Bus EEPROMs

Other I2C buses (I2C0_CLK, I2C0_DATA) operate at 3.3v I/O. The Power rail is 3.3v so no need to add level shift.

Figure 25: EEPROM I2C

4.2.5 I2C Based IO Expanders

I2C has 4-channel I2C bus switch device to expand I2C bus and I/O devices. NXP/TI
PCA9545A/45B/45C is a quad bidirectional translating switch controlled via the I2C-bus. The SCL/SDA upstream pair fans out to four downstream pairs, or channels. Any individual SCx/SDx channel or combination of channels can be selected, determined by the contents of the programmable control register. Four interrupt inputs, INT0 to INT3, one for each of the downstream pairs, are provided.

An active LOW reset input allows the PCA9545A/45B/45C to recover from a situation where one of the downstream I2C-buses is stuck in a LOW state. Pulling the RESET pin LOW resets the I2C-bus state machine and causes all the channels to be deselected as does the internal power-on reset function. The pass gates of the switches are constructed such that the VDD pin can be used to limit the maximum high voltage which is passed by the PCA9545A/45B/45C.

Figure 26: I2C IO Expanders

4.3 I2S Interfaces

4.3.1 General

This standard was introduced in 1986 by Philips (now NXP) and was last revised in 1996. The I2S protocol outlines one specific type of PCM digital audio communication with defined parameters outlined in the Philips specification. The bit clock pulses once for each discrete bit of data on the data lines. The bit clock frequency is the product of the sample rate, the number of bits per channel and the number of channels.

4.3.2 Freescale SGTL5000 I2S Audio Example

Figure 27: Freescale I2S Audio
4.3.3 Intel High Definition Audio Over I2S2

Figure 28: Daughter board for Intel HD audio
4.4 4.4 SPI Interface

4.4.1 General
The Serial Peripheral Interface (SPI) bus is a full duplex synchronous serial communication interface specification used for short distance communication. The interface was developed by Motorola and has become a de facto standard. SPI devices communicate in full duplex mode using a Master-Slave architecture with a single master. The master device originates the frame for reading and writing. Multiple slave devices are supported through selection with individual slave select by CS lines.

4.4.2 RTX Implementation
The RTX Module will be always the SPI master. And there are two SPI interfaces on RTX Modules.

Figure 29: SPI ROM

4.5 CAN Bus

4.5.1 General
The Controller Area Network (CAN) is a serial communications protocol which efficiently supports distributed real-time control with a very high level of security. Its domain of application ranges from high speed networks to low cost multiple wiring. A maximum signaling rate is 1 Mbps.
4.5.2 RTX Implementation

The RTX spec support 2 logic level CAN ports. Carrier board is required to implement CAN PHY as below. The connector is small form factor for demo board. This demo circuit shows 120 ohms terminations across the CAN pair.

![CAN Bus transceiver](image)

4.5.3 Isolation

The ISO 1050 is a galvanically isolated CAN transceiver that meets the specification ISO11898-2 standard. The device has logic input and output buffers separated by a silicon oxide (SiO2) insulation barrier that provides galvanic isolation of up 5000 Vrms for 1050DW and 2500 Vrms 1050DUP.

5. High Speed Serial I/O Interfaces

5.1 USB Bus

5.1.1 General

The USB (Universal Serial Bus) is a hot-pluggable general purpose high speed I/O standard for computer peripherals. The standard defines connector types (Type A, Type B, Mini-A, Mini-B, Micro-A and Micro-B), cabling, and communication protocols for interconnecting a wide variety of electronic devices.

The USB 2.0 Specification defines data transfer rates 480 Mbps (High Speed USB). A USB host bus connector uses 4 pins: a power supply pin (5V) with 500mA, a differential pair (D+ and D- pins) and a ground pin. Additionally a fifth pin, USB ID for USB-OTG that may be used which indicates whether the device operates in Host mode or a Client/Device mode.

The USB 3.0 Specification defines data rates 5 Gbps (Super Speed USB) that a USB host bus connector uses 9 pins: a power supply pin (5V) with 900mA, 3 differential pairs (D+ and D- pins for USB 2.0, SSRX+, SSRX-, SSTX+ and SSTX- for USB 3.0) and 2 ground pins.

RTX Modules support one USB 2.0 and one USB 3.0. USB 2.0 supports USB OTG feature.
USB 2.0 port can be configured as a host, client or OTG port. OTG operation is optional.

5.1.2 USB OTG

The figure 31 shows a USB-OTG implementation on the USB 2.0 port on a Mini USB Type B connector. The ESD diodes should be placed close to the connector, and the USB differential traces routed as differential pairs in “no stub” topology. The Common choke on differential pair can reduce common mode emission for EMC radiation.

The Module USB_OTG_PWR_EN# signal controls the power switch with short circuit protection, the Texas Instruments TPS2065 that current limit is between 1A and 1.9A. 70m ohms Rds on resistance can help voltage drop.

Figure 31: USB 2.0 OTG
5.1.3 USB 2.0/USB 3.0 Host Ports

The figure 32 shows Carrier board implementation of USB 2.0/3.0. The ESD diodes should be placed close to the connector and low capacitance to reduce signal integrity of USB 3.0. And the USB differential traces routed as differential pairs in “no stub” topology. The Common choke on differential pair can reduce common mode emission for EMC radiation.

The Module USB_HOST_PWR_EN# signal controls the power switch with short circuit protection, the Texas Instruments TPS2065 that current limit is between 1A and 1.9A. 70m ohms Rds on resistance can help voltage drop.

Figure 32: USB 3.0 IO

5.2 GBE

5.2.1 GBE Carrier Connector Implementation Example

RTX modules include GBE MACPHY, but do not included isolation magnetics. To support GBE that carrier board must include GBE compatible magnetics. An RJ45 connector with integrated magnetics reduces the space. An example is shown below.
5.2.2 GBE Mag-Jack Connector Recommendation

RTX GBE MAG-Jack (magnetics integrated into an RJ45 jack housing) should meet the following general characteristics:
- Turn ratios should be 1:1 +/- 2%. An integrated common mode choke should be included.
- Termination resistors and capacitors on the primary side (i.e. the Ethernet cable side) should be included 75 ohms and 2KV Hi-voltage capacitors.
- The secondary side transformer center-taps may be tied together or may be brought out separately. If they are brought out separately, they are tied together on the Carrier PCB.
- The secondary side center-taps need to be tied to GBE_CTREF voltage, with bypass capacitors connected to GND.

Recommend electrical magnetics characteristics.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Test Condition</th>
<th>Value</th>
<th>Unit</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductance</td>
<td>100kHz/100mV @ 8mA DC bias</td>
<td>OCL</td>
<td>350</td>
<td>uH</td>
</tr>
<tr>
<td>Turn Ratio</td>
<td>100kHz/100mV</td>
<td>TR</td>
<td>1:1</td>
<td>Tx</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1:1</td>
<td>Tx</td>
</tr>
<tr>
<td></td>
<td>1:1</td>
<td></td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>Insertion Loss</td>
<td>100 kHz through 999 KHz</td>
<td>IL</td>
<td>-1</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>1.0 MHz through 60 MHz</td>
<td></td>
<td>-0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60.1 MHz through 80MHz</td>
<td></td>
<td>-0.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80.1 MHz through 100 MHz</td>
<td></td>
<td>-1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100.1 MHz through 120 MHz</td>
<td></td>
<td>-2.4</td>
<td></td>
</tr>
<tr>
<td>Return Loss</td>
<td>1~30MHz @100 ohms</td>
<td>RL</td>
<td>-18</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>30~60MHz @100 ohms</td>
<td></td>
<td>-14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60~80MHz @100 ohms</td>
<td></td>
<td>-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80~100MHz @100 ohms</td>
<td></td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>Common Mode Rejection</td>
<td>1~100 MHz</td>
<td>CMR</td>
<td>-30</td>
<td>dB</td>
</tr>
<tr>
<td>Crosstalk</td>
<td>1~100 MHz</td>
<td>CT</td>
<td>-30</td>
<td>dB</td>
</tr>
</tbody>
</table>

5.2.3 GBE LEDs
Mag-Jack LED may be variable. Follow vendors spec to select parts to meet your product. 100M/1000G Link LED and Active LED are active low. Review LED sinking current and
resistance to meet power dissipation.

5.3 PCIe

5.3.1 General
The RTX provides X1 independent PCI Express® links (Port 0-1), which can be used independently. The PCI Express topology consists of a transmitter (Tx) on one device connected by a differential trace pair to a receiver (Rx) on a second device. One of the devices may be located on the carrier board or on an add-in card. For more information on PCI Express, refer to the PCI Express Base Specification, Rev. 2.0 and PCI Express Card Electromechanical Specification, Rev. 2.0.

5.3.2 PCIe X1 add-in Card on Carrier
Figure 34 is an example for add-in cards.

Figure 34: PCIe X1

5.3.3 PCIe M.2 (TBD)
5.4 SATA

5.4.1 General
SATA defines a high-speed serialized ATA data link interface. The serialized interface uses the command set from the ATA8-ACS standard, augmented with Native Command Queuing commands optimized for the serialized interface. The serialized ATA interface is defined in a register-compatible manner with parallel ATA to enable backward compatibility with parallel ATA drivers. The physical interface is defined to ease integration (low pin count, low voltages) and enable scalable performance (with currently defined data rates of 1.5 Gbps, 3.0 Gbps and 6.0 Gbps).

5.4.2 SATA Form Factor
Table 5: SATA Form Factor

<table>
<thead>
<tr>
<th>Form Factor</th>
<th>Key feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>SATA DOM</td>
<td>The application of SATA-DOM is space limitation, small formal factor and embedded systems etc. It takes advantage of multi-level cell (MLC) technology. The standard 7-pin SATA connection ensures speed performance the built in error correcting code (ECC) and error detection and correction (EDC) protect the data’s integrity.</td>
</tr>
<tr>
<td>SATA M.2 card</td>
<td>M.2 (formerly known as NGFF) is a small form factor card and connector that supports applications such as Wi-Fi, WWAN, USB, PCIe & SATA, as defined in the PCI-SIG M.2 Specification (see www.pcisig.com).</td>
</tr>
<tr>
<td>SATA SSD</td>
<td>A SSD comes in traditional HDD form factors such as 3.5-inch, 2.5-inch or 1.8-inch.</td>
</tr>
</tbody>
</table>
5.4.3 SATA-DOM

SATA-DOM is ideal for space limitation, small form factor and embedded systems etc. It takes advantage of multi-level cell (MLC) technology. The standard 7-pin SATA connection ensures speedy performance and the built in error correcting code (ECC) and error detection and correction (EDC) protects data integrity. In addition, it has no external cables, making it more robust for various industrial and enterprise applications.

Figure 35: SATA-DOM

5.4.4 SATA Connector

Figure 36: SATA Connector
6. Memory Card Interfaces

6.1 SD Card

The SD card is a memory card that is specifically designed to meet security, capacity, performance, and environment requirements inherent in newly emerging audio and video applications. The SD standard is maintained by the SD Card Association. In addition to the SD Memory Card, there is the SD I/O (SDIO) Card. The SDIO Card specification is defined in a separate specification named: "SDIO Card Specification" that can be obtained from the SD Association. The SD Memory Card communication is based on an advanced 9-pin interface (Clock, Command, 4xData and 3xPower lines) designed to operate at maximum operating frequency of 50 MHz and low voltage ranges. RTX module supports SDIO as one of the BOOT selections.

Figure 37: SD Card
6.2 eMMC

The eMMC (embedded Multi-Media-Card) interface is used to connect non-volatile multimedia memory devices to host processor. The eMMC standard is maintained by JEDEC, with the latest revision being JESD84-B51: Embedded Multi-Media Card (eMMC), Electrical Standard (Version 5.1).

An eMMC includes a raw MLC NAND flash memory and microcontroller. The eMMC microcontroller performs several functions such as bad block management, wear leveling and error correction code (ECC) internally which significantly reduces the software overhead.

RTX modules support 1 bit, 4 bit and 8 bit modes. The eMMC interface includes a clock line (maximum clock frequency of 26 MHz or 52 MHz for devices supporting High Speed mode), a command line and 8 data lines and an active low reset signal. RTX Modules support an eMMC Boot option. The detail of eMMC specification revision should refer RTX module spec.

Figure 38 eMMC
7. Camera Interfaces

7.1 General
The RTX specification allows for serial (MIPI CSI 2.0) and parallel cameras to be interfaced to the RTX Module. The Module camera interface is at V_IO (typically 3.3v) or CSI voltage levels. The same RTX pins are sharing for the serial and parallel interfaces, so some cautions are necessary, as outlined in the RTX specification document and below Table 6. A given module
design will generally support either a serial or a parallel camera interface. In the long term, it is expected that virtually all interfaces – including camera interfaces – will be serialized. MIPI Alliance Standard for Camera Serial Interface CSI-2 in 2005 and CSI-3 in 2012. There are a number of camera modules available that implement both serial and parallel interface formats on the same device, set by a strap pin.

7.2 Camera Data Interface formats
There are a wide variety of data formats that are used to convey camera data to a host system. A complete description of these formats is much beyond the scope of this design guide. In short, camera data formats may be divided into two groups: “raw” and “processed”. The raw camera data formats need to be adjusted for camera and sensor specific characteristics. Using the raw format requires an additional level of IPU (Image Processing Unit) and BT.656 or BT.1120 standard to process. Unless you have a specific need for a particular camera that outputs “raw” sensor data, it is best to stick with cameras that include a processor on the camera module that convert the camera sensor data to a standard format such as RGB or YUV, JPEG or others. The “Bayer” format is one of the numerous raw formats that you may wish to avoid. A variation on the above is that some cameras offer “raw” RGB, meaning that the pixel data is sorted into RGB elements but sensor nonlinearities are not processed in the camera IC.

7.3 Serial Camera Interface Example
The figure below illustrates a CSI implementation on a RTX Carrier.

Figure 39: CSI module
7.4 Parallel Camera Interface Example

Figure 40: Parallel Camera Module
7.5 CSI/PCAM Pin Sharing

Table 6 CSI / PCAM Pin Assignment

<table>
<thead>
<tr>
<th>Pin Location</th>
<th>CSI</th>
<th>PCAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>C29</td>
<td>CSI1_CK+</td>
<td>PCAM_D0</td>
</tr>
<tr>
<td>C27</td>
<td>CSI1_CK-</td>
<td>PCAM_D1</td>
</tr>
<tr>
<td>C23</td>
<td>CSI1_D0+</td>
<td>PCAM_D2</td>
</tr>
<tr>
<td>C21</td>
<td>CSI1_D0-</td>
<td>PCAM_D3</td>
</tr>
<tr>
<td>C17</td>
<td>CSI1_D1+</td>
<td>PCAM_D4</td>
</tr>
<tr>
<td>C15</td>
<td>CSI1_D1-</td>
<td>PCAM_D5</td>
</tr>
<tr>
<td>C11</td>
<td>CSI1_D2+</td>
<td>PCAM_D6</td>
</tr>
<tr>
<td>C9</td>
<td>CSI1_D2-</td>
<td>PCAM_D7</td>
</tr>
<tr>
<td>C5</td>
<td>CSI1_D3+</td>
<td>PCAM_D8</td>
</tr>
<tr>
<td>C3</td>
<td>CSI1_D3-</td>
<td>PCAM_D9</td>
</tr>
<tr>
<td>C18</td>
<td>CSI0_CK+</td>
<td>PCAM_D10</td>
</tr>
<tr>
<td>C16</td>
<td>CSI0_CK-</td>
<td>PCAM_D11</td>
</tr>
<tr>
<td>C12</td>
<td>CSI0_D0+</td>
<td>PCAM_D12</td>
</tr>
<tr>
<td>C10</td>
<td>CSI0_D0-</td>
<td>PCAM_D13</td>
</tr>
<tr>
<td>C6</td>
<td>CSI0_D1+</td>
<td>PCAM_D14</td>
</tr>
<tr>
<td>C4</td>
<td>CSI0_D1-</td>
<td>PCAM_D15</td>
</tr>
</tbody>
</table>
8. GPIO

8.1 RTX Module GPIO
RTX Modules support eighteen general purpose IO pins: GPIO0 to GPIO17. Each of these can be configured as an input or output pin. The RTX specification recommends the use of GPIO0 to GPIO5 as outputs and the use of GPIO6 to GPIO9 as inputs. The others 8 GPIOs (GPIO10 to GPIO17) are multiplexed pins supporting keypad. GPIO voltage level is 3.3V.

8.2 RTX GPIO multi-function Pin Sharing for Keypad

Table 7 GPIO multi-function Pin Assignment

<table>
<thead>
<tr>
<th>Pin Location</th>
<th>GPIO Signal</th>
<th>Multi-Function with</th>
</tr>
</thead>
<tbody>
<tr>
<td>B83</td>
<td>GPIO10</td>
<td>Keypad COL0</td>
</tr>
<tr>
<td>B85</td>
<td>GPIO11</td>
<td>Keypad COL1</td>
</tr>
<tr>
<td>B87</td>
<td>GPIO12</td>
<td>Keypad COL2</td>
</tr>
<tr>
<td>B89</td>
<td>GPIO13</td>
<td>Keypad COL3</td>
</tr>
<tr>
<td>B91</td>
<td>GPIO14</td>
<td>Keypad ROW0</td>
</tr>
<tr>
<td>B93</td>
<td>GPIO15</td>
<td>Keypad ROW1</td>
</tr>
<tr>
<td>B95</td>
<td>GPIO16</td>
<td>Keypad ROW2</td>
</tr>
<tr>
<td>B97</td>
<td>GPIO17</td>
<td>Keypad ROW3</td>
</tr>
</tbody>
</table>

Figure 41: Keypad
9. System Bus Interface

9.1 General
System bus support PC104 connector with 31 bits of address and 16 bits of data.

9.2 Support

10. Thermal Design and Management

10.1 General
RTX Modules generally have less power dissipations that are ranging from 2W to 6W for ARM based designs. The Heat Spreader should cool down the RISC CPU to meet thermal specifications and run in a room-temperature environment. In a production environment and extreme environment, heat-sink and airflow is usually necessary to keep the Module RISC CPU die temperatures within the recommended specification.

10.2 Heat Spreader
Heat spreaders are available and designed by RTX 2.0 module vendors. The figure 42: is below a typical heat spreader for a 68mm X 69mm RTX Module.

Figure 42: Heat spreader 2D drawing.

Figure 43: Z-height of Carrier board and module with heat spreader.
10.3 Thermal Resistance Calculations

Thermal performance means collecting resistance data from vendors. The thermal resistance vendors include silicon vendors, heat spreader, TIM (Thermal Interface Material), carrier board vendor and heat sink vendors.

According Ohm’s law and electrical resistance, thermal resistance is defined in degrees Celsius per Watt (°C/W). For instance, Thermal resistance is 10 °C/W and the source device dissipates 5W. The temperature rises 10 °C/W*5W=50 °C across that interface.

Table 8 Thermal Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max SOC Junction Temperature (Tj)</td>
<td>T_J-MAX</td>
<td>105 °C</td>
</tr>
<tr>
<td>Thermal Resistance, CPU Junction to ambient</td>
<td>θ_JA</td>
<td>15 °C/W</td>
</tr>
<tr>
<td>Thermal Resistance, CPU Junction to case</td>
<td>θ_JC</td>
<td>0.4 °C/W</td>
</tr>
<tr>
<td>TIM interface (SOC to heat spreader)</td>
<td>θ_TM</td>
<td>0.5 °C/W</td>
</tr>
<tr>
<td>Heat Spreader</td>
<td>θ_HS</td>
<td>8 °C/W</td>
</tr>
<tr>
<td>SOC maximum Power dissipation</td>
<td>W_SOC-MAX</td>
<td>5W</td>
</tr>
<tr>
<td>Maximum Environment Temperature</td>
<td>T_TOP-MAX</td>
<td>To be calculated</td>
</tr>
</tbody>
</table>

No heat sink

\[T_TOP-MAX = T_J-MAX - θ_JA * W_SOC-MAX = 105 - 15*5 = 30 °C \]

With Heat Spreader

\[T_TOP-MAX = T_J-MAX - (θ_JC + θ_TM + θ_HS)*W_SOC-MAX = 105 - (0.4+0.5+8)*5 = 60.5 °C \]
11. Carrier Board PCB Design Overview

11.1 General PCB Stack-up and consideration
This section presents an example stack-up for a carrier board based on the RTX 2.0 Module form factor.

Note: The Document provides signal routing trace length on the board level only. The maximum length listed in the routing guidelines for various interfaces does not account for package trace length. Customers are requested to use Trace Length Calculator (TLC) for RTX 2.0 Module and Carrier board for maximum length calculations.

Note: If the guidelines are followed, measure critical signals to ensure proper signal integrity and flight timing.

11.2 Six Layers PCB Stack-up
A platform based on the RTX 2.0 Module requires a board stack-up yielding a target nominal impedance for differential signals and single-ended signals. The platform should also target the trace widths and spacing to meet the routing specification shown in Table 9. The stack-up numbers may vary due to PCB material difference and type, thus it is important to work with your PCB vendors to fine tune with the specified impedance tolerances. Recommendations are based on the 6-layer board stack-up in Figure 44 and Table 9.

Figure 44: Six Layer PCB Stack-Up Example of 1.6mm (62 mils) Thick PCB
11.3 Trace Parameters for High Speed Differential Interface

Table 9: Impedance Table and Trace Width/Spacing of 1.6 mm (62 mil) thick PCB

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>1.6mm Thick PCB (in Mil)</th>
<th>Comments</th>
<th>Single End 80 ohms Trace Width</th>
<th>Single End 62 ohms Trace Width</th>
<th>Differential 80 ohms Trace Width/Spacing</th>
<th>Differential 62 ohms Trace Width/Spacing</th>
<th>Differential 90 ohms Trace Width/Spacing</th>
<th>Differential 100 ohms Trace Width/Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Soldermask</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>Top</td>
<td>1.5</td>
<td>0.5 oz (Cu weight) + Plating</td>
<td>5 mils</td>
<td>4 mils</td>
<td>5.6/6.5 mils</td>
<td>5.6/7 mils</td>
<td>5/7 mils</td>
<td>4/10 mils</td>
</tr>
<tr>
<td></td>
<td>Prepreg</td>
<td>3</td>
<td>Depends on PCB vendor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>Ground</td>
<td>1.3</td>
<td>1 oz (Cu Weight)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core</td>
<td>4</td>
<td>4 mil Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>Signal</td>
<td>1.3</td>
<td>1 oz (Cu Weight)</td>
<td>5 mils</td>
<td>4 mils</td>
<td>5.6/6.5 mils</td>
<td>5.6/7 mils</td>
<td>5/7 mils</td>
<td>4/12 mils</td>
</tr>
<tr>
<td></td>
<td>Prepreg</td>
<td>3</td>
<td>Depends on PCB vendor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td>Power</td>
<td>1.3</td>
<td>1 oz (Cu Weight)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core</td>
<td>4</td>
<td>4 mil Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td>Ground</td>
<td>1.3</td>
<td>1 oz (Cu Weight)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prepreg</td>
<td>3</td>
<td>Depends on PCB vendor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L6</td>
<td>Bottom</td>
<td>1.5</td>
<td>0.5 oz (Cu weight) + Plating</td>
<td>5 mils</td>
<td>4 mils</td>
<td>5.6/6.5 mils</td>
<td>5.6/7 mils</td>
<td>5/7 mils</td>
<td>4/10 mils</td>
</tr>
<tr>
<td></td>
<td>Soldermask</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finished</td>
<td></td>
<td>62.4 mils</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11.4 Trace Parameters for High Single Ended Interface (TBD)